Intracellular trafficking of glycosylphosphatidylinositol (GPI)-anchored proteins and free GPIs in Leishmania mexicana.
نویسندگان
چکیده
Free glycosylphosphatidylinositols (GPIs) are an important class of membrane lipids in many pathogenic protozoa. In this study, we have investigated the subcellular distribution and intracellular trafficking of an abundant class of free GPIs [termed glycosylinositolphospholipids (GIPLs)] in Leishmania mexicana promastigotes. The intracellular transport of the GIPLs and the major GPI-anchored glycoprotein gp63 was measured by following the incorporation of these molecules into sphingolipid-rich, detergent-resistant membranes (DRMs) in the plasma membrane. In metabolic-labelling experiments, mature GIPLs and gp63 were transported to DRMs in the plasma membrane with a t(1/2) of 70 and 40 min, respectively. Probably, GIPL transport to the DRMs involves a vesicular mechanism, as transport of both the GIPLs and gp63 was inhibited similarly at 10 degrees C. All GIPL intermediates were quantitatively recovered in Triton X-100-soluble membranes and were largely orientated on the cytoplasmic face of the endoplasmic reticulum, as shown by their sensitivity to exogenous phosphatidylinositol-specific phospho-lipase C. On the contrary, a significant proportion of the mature GIPLs ( approximately 50% of iM4) were accessible to membrane-impermeable probes on the surface of live promastigotes. These results suggest that the GIPLs are flipped across intracellular or plasma membranes during surface transport and that a significant fraction may populate the cytoplasmic leaflet of the plasma membrane. Finally, treatment of L. mexicana promastigotes with myriocin, an inhibitor of sphingolipid biosynthesis, demonstrated that ongoing sphingolipid biosynthesis is not required for the plasma-membrane transport of either gp63 or the GIPLs and that DRMs persist even when cellular levels of the major sphingolipid are depleted by 70%.
منابع مشابه
Leishmania mexicana mutants lacking glycosylphosphatidylinositol (GPI):protein transamidase provide insights into the biosynthesis and functions of GPI-anchored proteins.
The major surface proteins of the parasitic protozoon Leishmania mexicana are anchored to the plasma membrane by glycosylphosphatidylinositol (GPI) anchors. We have cloned the L. mexicana GPI8 gene that encodes the catalytic component of the GPI:protein transamidase complex that adds GPI anchors to nascent cell surface proteins in the endoplasmic reticulum. Mutants lacking GPI8 (DeltaGPI8) do n...
متن کاملEvidence that free GPI glycolipids are essential for growth of Leishmania mexicana.
The cell surface of the parasitic protozoan Leishmania mexicana is coated by glycosylphosphatidylinositol (GPI)-anchored glycoproteins, a GPI-anchored lipophosphoglycan and a class of free GPI glycolipids. To investigate whether the anchor or free GPIs are required for parasite growth we cloned the L.mexicana gene for dolichol-phosphate-mannose synthase (DPMS) and attempted to create DPMS knock...
متن کاملIntracellular glycosylphosphatidylinositols accumulate on endosomes: toxicity of alpha-toxin to Leishmania major.
Glycosylphosphatidylinositols (GPIs) are ubiquitous glycolipids in eukaryotes. In the protozoan Leishmania major, GPIs occur "free" or covalently linked to proteins (e.g., gp63) and polysaccharides. While some free GPIs are detected on the plasma membrane, specific sites where GPIs accumulate intracellularly are unknown in most cells, although the glycolipids are synthesized within the secretor...
متن کاملGlycosylphosphatidylinositol biosynthetic enzymes are localized to a stable tubular subcompartment of the endoplasmic reticulum in Leishmania mexicana.
Glycosylphosphatidylinositols (GPI) are essential components in the plasma membrane of the protozoan parasite Leishmania mexicana, both as membrane anchors for the major surface macromolecules and as the sole class of free glycolipids. We provide evidence that L.mexicana dolichol-phosphate-mannose synthase (DPMS), a key enzyme in GPI biosynthesis, is localized to a distinct tubular subdomain of...
متن کاملProteins with glycosylphosphatidylinositol (GPI) signal sequences have divergent fates during a GPI deficiency. GPIs are essential for nuclear division in Trypanosoma cruzi.
Glycosylphosphatidylinositols (GPIs) are membrane anchors for cell surface proteins of several major protozoan parasites of humans, including Trypanosoma cruzi, the causative agent of Chagas' disease. To investigate the general role of GPIs in T. cruzi, we generated GPI-deficient parasites by heterologous expression of T. brucei GPI-phospholipase C. Putative protein-GPI intermediates were deple...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 363 Pt 2 شماره
صفحات -
تاریخ انتشار 2002